
# Secondary Curriculum Maps



## Cumberland Valley School District Soaring to Greatness, Committed to Excellence

Physics

#### CV Priority Standard/PA Academic Standard

3.2.P.B5. Explain how waves transfer energy without transferring matter. Explain how waves carry information from remote sources that can be detected and interpreted. Describe the causes of wave frequency, speed, and wavelength.

### Taught in Unit(s)

9. Waves 10. Sound

## Common Misconceptions

Waves carry matter from one location to another location.

Impedance is directly proportional to wave speed.

Reflections are caused when waves hit only higher impedances.

Inversions can happen to a transmitted wave.

Refraction is the bending of a wave rather than the change in its speed.

Students misunderstand the concept of frequency.

| Big Idea(s)                                                                                                                                                                                                                                               | Essential Question(s)                                                                                                                                                                                                                                                                                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Waves are used to carry energy and information in useful ways.                                                                                                                                                                                            | What are the characteristics of waves and what<br>they travel in that can be understood to explain<br>how they are used in practical ways?                                                                                                                                                                                                                     |  |
| Assess                                                                                                                                                                                                                                                    | sments                                                                                                                                                                                                                                                                                                                                                         |  |
| Unit 9 Waves Exam (Common)<br>Unit 10 Sound Exam (Common)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                |  |
| Concepts                                                                                                                                                                                                                                                  | Skills                                                                                                                                                                                                                                                                                                                                                         |  |
| (what students need to know)                                                                                                                                                                                                                              | (what students must be able to do)                                                                                                                                                                                                                                                                                                                             |  |
| <ul> <li>Velocity</li> <li>Vectors</li> <li>Displacement</li> <li>Period</li> <li>Impedance</li> <li>Superposition</li> <li>Wave classifications</li> <li>Simple Harmonic Motion</li> <li>Standing Wave</li> <li>Frequency</li> <li>Wavelength</li> </ul> | <ul> <li>Predict the results of wave interactions with other waves and what they travel in.</li> <li>Recognize wave types.</li> <li>Explain how Simple Harmonic Motion is the basis for all wave motion.</li> <li>Explain how standing waves are generated in a variety of situations, how they are used productively and avoided when detrimental.</li> </ul> |  |

| CV Priority Standard /                                       | PA Academic Standard                                        |  |
|--------------------------------------------------------------|-------------------------------------------------------------|--|
| 3.2.P.B4. Explain how stationary and moving particles        |                                                             |  |
|                                                              | voltage, resistance, and the connections among them.        |  |
| Explain how electrical induction is applied in technological |                                                             |  |
|                                                              | in Unit(s)                                                  |  |
| 8. Circuits                                                  |                                                             |  |
| Common Misconceptions                                        |                                                             |  |
| Students think that positive charges move.                   |                                                             |  |
|                                                              |                                                             |  |
| Students fail to recognize series and parallel circuits.     |                                                             |  |
|                                                              |                                                             |  |
| Students do not form a concrete understanding of pot         | ential difference (voltage).                                |  |
|                                                              |                                                             |  |
| Big Idea(s)                                                  | Essential Question(s)                                       |  |
| Circuits allow charge to flow based on differences in        | How can basic quantities that measure electricity be        |  |
| electric potential energy in order to power our              | used to describe the operation of circuits?                 |  |
| lifestyles.                                                  |                                                             |  |
|                                                              | How do the laws of conservation of matter and               |  |
| Conservation Laws can be used to predict physical            | energy apply to circuits?                                   |  |
| events.                                                      |                                                             |  |
|                                                              | sments                                                      |  |
| Unit 8 Circuits Exam (Common)                                |                                                             |  |
| Concepts                                                     | Skills                                                      |  |
| (what students need to know)                                 | (what students must be able to do)                          |  |
| Positive Charge                                              | • Apply Ohm's Law to understand                             |  |
| Negative Charge                                              | relationships of current, voltage, and                      |  |
| • Electric Field                                             | resistance.                                                 |  |
| Potential     Explain how capacitors work.                   |                                                             |  |
| <ul> <li>Potential Difference (Voltage)</li> </ul>           | <ul> <li>Recognize series and parallel circuits.</li> </ul> |  |
| • Capacitance                                                | • Wire series and parallel circuits.                        |  |
| Ohm's Law                                                    | • Apply the laws of conservation of matter and              |  |
| Resistance                                                   | energy to circuits.                                         |  |
| Current     Series Circuit                                   |                                                             |  |
| Series Circuit     Develled Circuit                          |                                                             |  |
| Parallel Circuit     Payar                                   |                                                             |  |
| <ul><li>Power</li><li>Multimeter</li></ul>                   |                                                             |  |
| ▼ Multimeter                                                 |                                                             |  |
|                                                              |                                                             |  |

| CV Priority Standard/                                                                                            | PA Academic Standard                                                                                             |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Electrostatics 3.2.12.B4. Describe conceptually the attr<br>to their charges and the distance between them.      | active and repulsive forces between objects relative                                                             |
| Taught i                                                                                                         | n Unit(s)                                                                                                        |
| 7. Electrostatics                                                                                                |                                                                                                                  |
| Common Misconceptions                                                                                            |                                                                                                                  |
| Students poorly differentiate force and field                                                                    |                                                                                                                  |
| Students have difficulty applying the inverse square re<br>Students misunderstand that it is always the negative |                                                                                                                  |
| Big Idea(s)                                                                                                      | Essential Question(s)                                                                                            |
| Electric charges create attractive and repulsive                                                                 | How can Coulomb's Law be used to predict the                                                                     |
| forces whose magnitude changes with distance and                                                                 | forces that exist between charges?                                                                               |
| charge magnitude.                                                                                                |                                                                                                                  |
|                                                                                                                  | sments                                                                                                           |
| Unit 7 Electrostatics Exam (Common)                                                                              |                                                                                                                  |
| Concepts                                                                                                         | Skills                                                                                                           |
| (what students need to know)                                                                                     | (what students must be able to do)                                                                               |
| <ul> <li>Positive Charge</li> </ul>                                                                              | • Apply Coulomb's Law                                                                                            |
| <ul> <li>Negative Charge</li> </ul>                                                                              | • Convert between SI units (micro, milli, etc)                                                                   |
| <ul> <li>Charging Methods</li> </ul>                                                                             | <ul> <li>Recognize when charges attract and repel</li> <li>Draws and divert former and algorithm fold</li> </ul> |
| • Electric Force                                                                                                 | <ul> <li>Draw and direct force and electric field</li> </ul>                                                     |
| <ul> <li>Electric Field</li> </ul>                                                                               | vectors                                                                                                          |
| <ul> <li>Coulomb's Law</li> </ul>                                                                                |                                                                                                                  |
| <ul> <li>Electric Field Equations</li> </ul>                                                                     |                                                                                                                  |
| -                                                                                                                |                                                                                                                  |

| CV Priority Standard/PA Academic Standard                                                            |                                                 |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| 3.2.12.B2. Explain how energy flowing through an open system can be lost. Demonstrate how the law of |                                                 |  |  |
| conservation of momentum and conservation of energy provide alternate approaches to predict and      |                                                 |  |  |
| describe the motion of objects.                                                                      |                                                 |  |  |
| Taught in                                                                                            | n Unit(s)                                       |  |  |
| 5. Work and Energy                                                                                   |                                                 |  |  |
| 6. Momentum                                                                                          |                                                 |  |  |
| Common Misconceptions                                                                                |                                                 |  |  |
| Students do not differentiate between Force and Work                                                 | . They use these concepts interchangeably.      |  |  |
|                                                                                                      |                                                 |  |  |
| Students often treat momentum as if it is a scalar quan                                              | tity.                                           |  |  |
|                                                                                                      |                                                 |  |  |
| Big Idea(s)                                                                                          | Essential Question(s)                           |  |  |
| Conservation Laws can be used to predict physical                                                    | How can the Law of Conservation of Energy be    |  |  |
| events.                                                                                              | used to predict what will happen when there are |  |  |
| conservative forces acting versus when there a                                                       |                                                 |  |  |
| Describing how things move supports an                                                               | dissipative forces acting?                      |  |  |
| understanding of our physical world.                                                                 |                                                 |  |  |
| How does energy conservation relate to momentu                                                       |                                                 |  |  |
| In an energy hungry world, understanding how it is                                                   | conservation?                                   |  |  |
| accessed, used and lost is essential.                                                                |                                                 |  |  |
| Assess                                                                                               | ments                                           |  |  |
| Unit 5 Work & Energy Exam (Common)                                                                   |                                                 |  |  |
| Unit 6 Momentum Exam (Common)                                                                        |                                                 |  |  |
| Concepts                                                                                             | Skills                                          |  |  |
| (what students need to know)                                                                         | (what students must be able to do)              |  |  |
| <ul> <li>Scalar / Vector</li> </ul>                                                                  | <ul> <li>Recognizes types of energy</li> </ul>  |  |  |
| • Work                                                                                               | Calculate energies                              |  |  |
| <ul> <li>Energy Types</li> </ul>                                                                     | • Apply the law of conservation of energy to    |  |  |
| <ul> <li>Energy Conservation</li> </ul>                                                              | predict an objects' motion                      |  |  |
| <ul> <li>Linear Momentum</li> </ul>                                                                  | • Apply the law of conservation of momentum     |  |  |
| <ul> <li>Conservation of Momentum</li> </ul>                                                         | to predict objects' interactions                |  |  |
| <ul> <li>Friction</li> <li>Differentiate conservative and dissipation</li> </ul>                     |                                                 |  |  |
|                                                                                                      | forces                                          |  |  |

#### CV Priority Standard/PA Academic Standard

Forces 3.2.10.B1. Analyze the relationships among the net forces acting on a body, the mass of the body, and the resulting acceleration using Newton's Second Law of Motion. Apply Newton's Law of Universal Gravitation to the forces between two objects. Use Newton's Third Law to explain forces as interactions between bodies. Describe how interactions between objects conserve momentum.

#### Taught in Unit(s)

3. Forces

4. Circular Motion

5. Work and Energy

6. Momentum

7. Electrostatics

#### **Common Misconceptions**

Students often think that two different mass objects interacting experience different forces. Newton's 3rd law says they are equal and opposite forces.

Students often fail to differentiate between mass and weight.

Students fail to recognize the distinctions between different forces.

Students think that an object moving with a constant velocity has acceleration and requires a force to sustain that constant velocity.

Students treat momentum as a scalar quantity.

When applying Newton's Law of Universal Gravitation to orbits, students find the field caused by the satellite instead of the field caused by the central mass.

| Big Idea(s)                                                                                                                                                                       | Essential Question(s)                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| <ul> <li>Objects' interactions can be described using forces.</li> </ul>                                                                                                          | How are forces used to explain different types of motion (constant vs accelerated)?    |  |
|                                                                                                                                                                                   | How are the properties of forces used to describe the interactions of objects?         |  |
|                                                                                                                                                                                   | How can forces be used to explain and predict the motion of objects moving in circles? |  |
|                                                                                                                                                                                   | How do Newton's Laws apply to conservation of momentum?                                |  |
|                                                                                                                                                                                   | sments                                                                                 |  |
| Unit 3 Forces Exam (Common)<br>Unit 4 Circular Motion Exam (Common)<br>Unit 5 Work & Energy Exam (Common)<br>Unit 6 Momentum Exam (Common)<br>Unit 7 Electrostatics Exam (Common) |                                                                                        |  |
| Concepts                                                                                                                                                                          | Skills                                                                                 |  |
| (what students need to know)                                                                                                                                                      | (what students must be able to do)                                                     |  |
| Scalar / Vector                                                                                                                                                                   | <ul> <li>Recognize when common forces are acting</li> </ul>                            |  |

| <ul> <li>Common forces</li> </ul>                         | <ul> <li>Recognize the direction of common forces</li> </ul>     |
|-----------------------------------------------------------|------------------------------------------------------------------|
| Mass                                                      | <ul> <li>Recognize that centripetal forces cause</li> </ul>      |
| <ul> <li>Newton's Laws of Motion</li> </ul>               | circular motion                                                  |
| <ul> <li>Newton's Law of Universal Gravitation</li> </ul> | <ul> <li>Resolve vectors into horizontal and vertical</li> </ul> |
| <ul> <li>Linear Momentum</li> </ul>                       | components                                                       |
| <ul> <li>Conservation of Momentum</li> </ul>              | <ul> <li>Apply Newton's Laws of Motion to situations</li> </ul>  |
| • Work                                                    | involving forces, motion, and acceleration                       |
| <ul> <li>Coulomb's Law</li> </ul>                         | <ul> <li>Draw force diagrams of everyday situations</li> </ul>   |
|                                                           | <ul> <li>Apply Newton's Law of Universal Gravitation</li> </ul>  |
|                                                           | to a satellite's orbit                                           |
|                                                           | • Apply the law of conservation of momentum                      |
|                                                           | to predict objects' interactions                                 |

| CV Priority Standard/PA Academic Standard                                                                |                                                              |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
| Motion 3.2.P.B1. Differentiate among translational motion, simple harmonic motion, and rotational motion |                                                              |  |  |
| in terms of position, velocity, and acceleration. Use for                                                | -                                                            |  |  |
| harmonic motion of objects. Relate torque and rotational inertia to explain rotational motion.           |                                                              |  |  |
|                                                                                                          | n Unit(s)                                                    |  |  |
| 1. Motion                                                                                                |                                                              |  |  |
| 2. Projectile Motion                                                                                     |                                                              |  |  |
| <ol> <li>Forces</li> <li>Circular Motion</li> </ol>                                                      |                                                              |  |  |
| 5. Work & Energy                                                                                         |                                                              |  |  |
| 6. Momentum                                                                                              |                                                              |  |  |
| 10. Waves                                                                                                |                                                              |  |  |
| Common Misconceptions                                                                                    |                                                              |  |  |
| Students do not differentiate to concepts of velocity an                                                 | d acceleration                                               |  |  |
| students do not unterentiate to concepts of verocity an                                                  |                                                              |  |  |
| Students often read position graphs as velocity and vic                                                  | e versa.                                                     |  |  |
| Students think that an object moving with a constant v that constant velocity.                           | elocity has acceleration and requires a force to sustain     |  |  |
| Students do not differentiate between Force and Work                                                     | . They use these concepts interchangeably.                   |  |  |
| Students think that all repetitive motion is simple harr                                                 | nonic motion.                                                |  |  |
| Students often treat momentum as if it is a scalar quan                                                  | tity                                                         |  |  |
| Big Idea(s)                                                                                              | Essential Question(s)                                        |  |  |
| Describing how things move supports an                                                                   | How can the motion of objects be described                   |  |  |
| understanding of our physical world.                                                                     | mathematically and graphically?                              |  |  |
| 0 1 7                                                                                                    |                                                              |  |  |
| Objects' interactions can be described using forces. How are horizontal and vertical motions relate      |                                                              |  |  |
|                                                                                                          | How are forces used to explain different types of            |  |  |
|                                                                                                          | motion (constant vs accelerated)?                            |  |  |
|                                                                                                          |                                                              |  |  |
|                                                                                                          | sments                                                       |  |  |
| Unit 1 Motion Exam (Common)                                                                              |                                                              |  |  |
| Unit 2 Projectile Exam (Common)<br>Unit 3 Forces Exam (Common)                                           |                                                              |  |  |
| Unit 4 Circular Motion Exam (Common)                                                                     |                                                              |  |  |
| Unit 5 Work & Energy Exam (Common)                                                                       |                                                              |  |  |
|                                                                                                          |                                                              |  |  |
| Unit 6 Momentum Exam (Common)<br>Unit 10 Wave Exam (Common)                                              |                                                              |  |  |
| Concepts                                                                                                 | Skills                                                       |  |  |
| (what students need to know)                                                                             | (what students must be able to do)                           |  |  |
| • Scalar / Vector                                                                                        | <ul> <li>Interpret and create motion graphs</li> </ul>       |  |  |
| <ul> <li>Distance / Displacement</li> </ul>                                                              | <ul> <li>Recognize how and when common forces are</li> </ul> |  |  |
| <ul> <li>Speed / Velocity</li> <li>Acting</li> </ul>                                                     |                                                              |  |  |
| <ul> <li>Acceleration</li> <li>Apply the equations of motion to real life</li> </ul>                     |                                                              |  |  |
| • Equations of Motion                                                                                    | situations in one and two dimensions                         |  |  |
| Gravitational Acceleration                                                                               | • Resolve vectors into horizontal and vertical               |  |  |
| Common forces     components                                                                             |                                                              |  |  |
| • Mass                                                                                                   |                                                              |  |  |

| • Simple Harmonic Motion | <ul> <li>Apply Newton's Laws of Motion to situations<br/>involving forces and motion</li> <li>Draw force diagrams</li> <li>Describe the characteristics of different types<br/>of simple harmonic motion</li> </ul> |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Grade: 1             | 1 - 12   |                                            | SUBJECT                                                          |
|----------------------|----------|--------------------------------------------|------------------------------------------------------------------|
| Unit                 | Timeline | Topics                                     | Priority Standards                                               |
|                      |          | Vectors & Scalars                          | 3.2.P.B1                                                         |
|                      |          | Displacement                               | 3.2.P.B1                                                         |
|                      |          | Velocity                                   | 3.2.P.B1                                                         |
| 1. Motion            | 18 days  | Acceleration                               | 3.2.P.B1                                                         |
|                      |          | Position & Velocity<br>Graphs              | 3.2.P.B1                                                         |
|                      |          | Equations of Motion                        | 3.2.P.B1                                                         |
|                      |          | Gravitational                              | 5.2.1.61                                                         |
|                      |          | Acceleration                               | 3.2.P.B1                                                         |
|                      |          |                                            |                                                                  |
|                      |          | Vector Components                          | 3.2.P.B1                                                         |
|                      |          | 2D Motion                                  | 3.2.P.B1                                                         |
| 2. Projectile        | 15 days  | Off the Cliff                              | 3.2.P.B1                                                         |
| Motion               |          | Ground to Ground                           | 3.2.P.B1                                                         |
|                      |          | Shoot the Cliff & More                     | 3.2.P.B1                                                         |
|                      |          | Complex                                    | 5.2.P.D1                                                         |
|                      |          | Newton's Laws                              | 3.2.10.B1, 3.2P.B1                                               |
|                      |          | Types of Forces                            | 3.2.10.B1                                                        |
|                      |          | Force Diagrams                             | 3.2.10.B1                                                        |
| 3. Forces            | 19 days  | Tension Problems                           | 3.2.10.B1, 3.2P.B1                                               |
|                      | -        | Friction Problems                          | 3.2.10.B1, 3.2P.B1                                               |
|                      |          | Inclines                                   | 3.2.10.B1, 3.2P.B1                                               |
|                      |          | Vertical Acceleartion                      | 3.2.10.B1, 3.2P.B1                                               |
|                      |          | <b>A A A</b>                               |                                                                  |
|                      |          | Centripetal Force                          | 3.2.10.B1, 3.2P.B1                                               |
|                      |          | Friction Problems<br>(Turntables & Rotors) |                                                                  |
| 4. Circular          | 13 days  | Vertical Circles                           | 3.2.10.B1, 3.2P.B1                                               |
| Motion               | 15 uays  | Newton's Universal Law                     | 5.2.10.01, 5.21.01                                               |
|                      |          | of Gravitation                             | 3.2.10.B1                                                        |
|                      |          | Orbits                                     | 3.2.10.B1, 3.2P.B1                                               |
|                      |          |                                            |                                                                  |
|                      |          | Work                                       | 3.2.12.B2, 3.2.10.B1                                             |
| 5. Work and          | 17 days  | Power                                      | 3.2.12.B2, 3.2.10.B1                                             |
| Energy               | 17 uays  | Energy Types                               | 3.2.12.B2                                                        |
|                      |          | Conservation of Energy                     | 3.2.12.B2, 3.2.10.B1, 3.2P.B1                                    |
|                      |          | Work of Friction                           | 3.2.12.B2, 3.2.10.B1, 3.2P.B1                                    |
|                      |          |                                            |                                                                  |
|                      |          | Impulse                                    | 3.2.12.B2, 3.2.10.B1, 3.2P.B1                                    |
|                      | 17 days  | Momentum                                   | 3.2.12.B2, 3.2.10.B1, 3.2P.B1                                    |
| 6. Momentum          |          | (Energy Conservatioin)                     | 3.2.12.B2, 3.2.10.B1, 3.2P.B1                                    |
|                      |          | Ballistic Pendulums                        | 3.2.12.B2, 3.2.10.B1, 3.2P.B1                                    |
|                      |          | Collisions                                 | 3.2.12.B2, 3.2.10.B1, 3.2P.B1                                    |
|                      |          | Channel                                    | 22242242                                                         |
| _                    |          | Charges<br>Charging Mathada                | 3.2.P.B4, 3.2.12.B4                                              |
| 7.<br>Electrostatics | 18 days  | Charging Methods                           | 3.2.P.B4, 3.2.12.B4                                              |
|                      |          | Electric Field                             | 3.2.12.B4, 3.2.12.B2                                             |
|                      |          | Coulomb's Law                              | 3.2.12.B4, 3.2.10.B1, 3.2P.B1                                    |
|                      |          | Potential                                  | 3.2.12.B2, 3.2.12.B4, 3.2.P.B4                                   |
| 8. Circuits 1        | 19 days  | Capacitance                                | 3.2.12.B2, 3.2.12.B4, 3.2.P.B4<br>3.2.12.B2, 3.2.12.B4, 3.2.P.B4 |
|                      |          | Ohm's Law                                  | 3.2.P.B4                                                         |
|                      |          | Series / Parallel                          | 3.2.12.B2, 3.2.12.B4, 3.2.P.B4                                   |
|                      |          | Matter                                     | 3.2.12.B2, 3.2.12.B4, 3.2.P.B4                                   |
|                      |          | Matter                                     | 5.2.12.02, 3.2.12.07, 3.2.f .DT                                  |
| <b>9. Waves</b> 18 d |          | Simple Harmonic Motion                     | 3.2.P.B1, 3.2.12.B2, 3.2.P.B5                                    |
|                      | 18 days  | Wave Characteristics                       | 3.2.P.B5                                                         |
|                      |          | Impedance                                  | 3.2.P.B1, 3.2.12.B2, 3.2.P.B5                                    |
|                      |          | Wave Properties                            | 3.2.P.B1, 3.2.12.B2, 3.2.P.B5                                    |
|                      |          | wave i topetties                           | J.2.1. J.1, J.2.12, J.2.1 .DJ                                    |
| 10. Sound            |          | Sound Properties                           | 3.2.P.B5, 3.2.12.B2, 3.2.P.B1                                    |
|                      | 16 days  | Stringed Instruments                       | 3.2.P.B5, 3.2.P.B1                                               |
|                      |          |                                            | 0121 120, 0121 121                                               |
| Torbound             |          | Wind Instruments                           | 3.2.P.B5, 3.2.P.B1                                               |