

Secondary Curriculum
Maps

Cumberland Valley School
District

Soaring to Greatness, Committed to

Excellence

Computer Science Programing

Computer Science (3093)

Unit Timeline Topics Priority Standards

Basic syntax for C/C++ 3B-AP-10 -- Use and adapt classic algorithms to solve computational problems.

Documenting a C/C++ program 3B-AP-18 -- Explain security issues that might lead to compromised computer programs.

Debugging a C/C++ program 3B-AP-23 -- Evaluate key qualities of a program through a process such as a code review.

Input/Output in C/C++ (15 days) 3B-AP-10 -- Use and adapt classic algorithms to solve computational problems.

Conditionals in C/C++ (10 days) 3B-AP-11 -- Evaluate algorithms in terms of their efficiency, correctness, and clarity.

Loops in C/C++ (10 days) 3B-AP-12 -- Compare and contrast fundamental data structures and their uses.

Arrays in C/C++ (15 days)

Strings in C/C++ (5 days)

Pointers in C/C++ (5 days)

Functions (20 days) 3B-AP-10 -- Use and adapt classic algorithms to solve computational problems.

Structs / Classes (25 days) 3B-AP-11 -- Evaluate algorithms in terms of their efficiency, correctness, and clarity.

3B-AP-12 -- Compare and contrast fundamental data structures and their uses.3B-AP-14 -- Construct solutions to problems using student-created components, such as procedures,

modules and/or objects.

Searching (2 days) 3B-AP-10 -- Use and adapt classic algorithms to solve computational problems.

Sorting (13 days) 3B-AP-11 -- Evaluate algorithms in terms of their efficiency, correctness, and clarity.

Program

Development

 Grade: 10-12

Object-Oriented

Programming

(Functions and

Classes)

Control

Statements,

Structures, and

Coding Fluency

Algorithms (Sorting

/ Searching)

45 Days

Concurrent

(~120 Days)

60 Days

15 Days

Computer	Science	Curriculum	Map	
	

CSTA	K‐12	Standards	2017	Revision	
3B‐AP‐23	‐‐	Evaluate	key	qualities	of	a	program	through	a	process	such	as	a	code	review	

Taught	in	Unit(s)	

Explanation/Example	of	Standard
Examples of qualities could include correctness, usability, readability, efficiency, portability, and
scalability.
Common	Misconceptions	
Lack	of	commenting	or	no	commenting	at	all	
Poor	spacing	
No	header	
	

Big	Idea(s)	 Essential	Question(s)	
When	a	program	doesn’t	work,	there	are	ways	to	
fix	it.	
	
Your	programming	peers	need	to	understand	
your	code!	

How	do	I	identify	and	debug	any	errors	in	my	
program?	

How	do	I	enter,	document,	and	execute	a	simple	
program?	

		
	

Assessments	
	

Concepts	
(what students need to know)

Skills	
(what students must be able to do)	

What are the qualities of a well-documented,
efficient program which follow a set of stylistic
guidelines.

Students will be able to evaluate a program on its
efficiency, correctness, and readability.

Computer	Science	Curriculum	Map	
	

CSTA	K‐12	Standards	2017	Revision	
3B‐AP‐18	‐‐	Explain	security	issues	that	might	lead	to	compromised	computer	programs	

Taught	in	Unit(s)	

Explanation/Example	of	Standard
 For example, common issues include lack of bounds checking, poor input validation, and
 circular references.
Common	Misconceptions	
Assuming	a	program	works	simply	because	they	tried	one	correct	test	case	
Traversing	too	far	through	an	array	
Using	the	incorrect	variable	type	‐	integers	versus	decimals	
	

Big	Idea(s)	 Essential	Question(s)	
When	a	program	doesn’t	work,	there	are	ways	to	
fix	it.	

How	do	I	identify	and	debug	any	errors	in	my	
program?	

	

Assessments	
	

Concepts	
(what students need to know)

Skills	
(what students must be able to do)	

Understand and identify errors in programming
syntax to explain common issue(s) with the
code.

Students will be able to identify explain common
syntax and logic errors in code.

Computer	Science	Curriculum	Map	
	

CSTA	K‐12	Standards	2017	Revision	
3B‐AP‐14	‐‐	Construct	solutions	to	problems	using	student‐created	components,	such	as	procedures,	
modules,	and/or	objects.	

Taught	in	Unit(s)	

Explanation/Example	of	Standard
Object-oriented programming and other problems which can be assigned or student-selected.
Common	Misconceptions	
Putting	too	much	into	a	single	procedure	
Overusing	global	variable	rather	than	passing	variables	as	parameters	
Misunderstanding	the	nature	of	timers	in	Visual	BASIC	
	

Big	Idea(s)	 Essential	Question(s)	
There	is	an	optimal	approach	and	an	efficient	
method	to	unpack	assigned	tasks.	
	
Coding	applies	beyond	the	classroom!	
	
As	coding	languages	are	robust,	programmers	
should	have	the	ability	to	research/explore	
topics	which	are	new	or	unknown.	

How	do	I	write	a	series	of	programming	
instructions	in	a	logical	sequence	to	solve	a	
problem?	

	
What	are	some	resources	I	can	use	to	enhance	
my	knowledge	of	coding	beyond	the	scope	of	this	
class?

Assessments	

	
Concepts	

(what students need to know)
Skills	

(what students must be able to do)	
How are subroutines, functions, and procedures
constructed and added into program.

Students will be able to construct subroutines,
functions, and procedures using prior knowledge as
well as be able to research keywords and concepts
beyond the scope of the class.

Computer	Science	Curriculum	Map	
	

CSTA	K‐12	Standards	2017	Revision	
3B‐AP‐12	‐‐	Compare	and	contrast	fundamental	data	structures	and	their	uses.	

Taught	in	Unit(s)	

Explanation/Example	of	Standard
Examples could include strings, lists, arrays, stacks, and queues.
Common	Misconceptions	
Using	the	wrong	data	structure	
Type	mismatch	between	strings	and	numbers	
Using	the	wrong	index	on	a	structure	(for	example,	not	starting	at	0)	
	

Big	Idea(s)	 Essential	Question(s)	
There	is	an	optimal	approach	and	an	efficient	
method	to	unpack	assigned	tasks.	
	
Coding	applies	beyond	the	classroom!	

How	do	I	write	a	series	of	programming	
instructions	in	a	logical	sequence	to	solve	a	
problem?	

	
What	are	looping	structures	and	how	do	they	
improve	our	programs?	
	
What	are	arrays/lists	and	how	do	they	improve	
our	programs?	
	
What	are	subroutines/functions	and	how	do	they	
improve	our	programs?	
		
What	are	strings	and	what	are	some	functions	
which	we	can	use	in	our	programs	to	manipulate	
them?

Assessments	

	
Concepts	

(what students need to know)
Skills	

(what students must be able to do)	
What are the various coding data structures, and
what are the similarities and differences
between them?

Students will be able to differentiate between the
various data structures such as loops, arrays, strings,
functions, etc...

Computer	Science	Curriculum	Map	
	

CSTA	K‐12	Standards	2017	Revision	
3B‐AP‐11	‐‐	Evaluate	algorithms	in	terms	of	their	efficiency,	correctness,	and	clarity.	

Taught	in	Unit(s)	

Explanation/Example	of	Standard
Examples could include sorting and searching.
Common	Misconceptions	
Just	because	the	program	works	doesn’t	mean	it’s	the	most	efficient	way	to	solve	the	task.	
Repeatedly	coding	something	rather	than	using	a	single	subroutine	
Miscounting	the	number	of	steps	an	algorithm	takes	to	execute	
	

Big	Idea(s)	 Essential	Question(s)	
There	is	an	optimal	approach	and	an	efficient	
method	to	unpack	assigned	tasks.	
	
When	a	program	doesn’t	work,	there	are	ways	to	
fix	it.	

How	do	I	write	a	series	of	programming	
instructions	in	a	logical	sequence	to	solve	a	
problem?	

How	do	I	identify	and	debug	any	errors	in	my	
program?	

Assessments	
	

Concepts	
(what students need to know)

Skills	
(what students must be able to do)	

How are algorithms evaluated for their
efficiency, correctness, and clarity

Students will be able to determine the efficiency,
correctness, and clarity of algorithms by testing and
documenting their code..

Computer	Science	Curriculum	Map	
	

CSTA	K‐12	Standards	2017	Revision	
3B‐AP‐10	‐‐	Use	and	adapt	classic	algorithms	to	solve	computational	problems.	

Taught	in	Unit(s)	

Explanation/Example	of	Standard
Examples could include sorting and searching.
Common	Misconceptions	
The order of lines of code (For example, calculating a formula before the user enters input.)
Assignment dyslexia (x + 6 = x rather than x = x + 6)
Improper logic checking (For example, multiple if rather than if/elseif.)
	

Big	Idea(s)	 Essential	Question(s)	
There	is	an	optimal	approach	and	an	efficient	
method	to	unpack	assigned	tasks.	
	
Coding	applies	beyond	the	classroom!	

How	do	I	write	a	series	of	programming	
instructions	in	a	logical	sequence	to	solve	a	
problem?	

Assessments	
	

Concepts	
(what students need to know)

Skills	
(what students must be able to do)	

How are programming keywords and syntax
used to solve computational problems.

Students will be able to use the proper programming
keywords and syntax to solve computational
problems.

